A damage model for heavy rainfall?
A spatial analysis of rainfall damage data using C-band weather radar images

Matthieu Spekkers
Matthijs Kok
Francois Clemens
Marie-claire ten Veldhuis

Delft University of Technology

September 5, 2013
Risks of heavy rainfall

- local (pluvial) floods
- short
- frequent
- few decimeters of water (particularly true in flat areas)
- hardly any casualties (idem)
Water-related damage in 2011*

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
<th>Total damage</th>
<th>Related to rainfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands</td>
<td>16.7m</td>
<td>332m</td>
<td>136m</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.5m</td>
<td>894m</td>
<td>800m</td>
</tr>
<tr>
<td>Sweden</td>
<td>9.1m</td>
<td>410m</td>
<td>n/a</td>
</tr>
<tr>
<td>Norway</td>
<td>4.7m</td>
<td>234m</td>
<td>n/a</td>
</tr>
</tbody>
</table>

*) figures are in Euros and related to residential buildings only; definition of water-related damage may vary between countries
Flood damage estimation

To estimate damage of a single element (e.g. building) or a spatially aggregated unit (e.g. neighbourhood)

- Traditional damage model: flood depth, building class $\rightarrow \mathbb{E}$
 - Poor 1-on-1 relationship between flood depth and damage
- For pluvial flooding in flat areas, ‘flood depth’ is not meaningful
 - Only a very small range of flood depths
 - We cannot reliably predict flood depths (yet)
Flood damage estimation

To estimate damage of a single element (e.g. building) or a spatially aggregated unit (e.g. neighbourhood)

- Traditional damage model: flood depth, building class $\rightarrow €$
 - Poor 1-on-1 relationship between flood depth and damage
- For pluvial flooding in flat areas, ‘flood depth’ is not meaningful
 - Only a very small range of flood dephts
 - We cannot reliably predict flood depths (yet)
The many factors contributing to rainfall damage

- Building-related properties
- Socio-economic factors of insured household
- Rainfall characteristics
- Local topographic features
- Drainage system characteristics

Heavy rainfall damage to residential buildings
The many factors contributing to rainfall damage

Heavy rainfall damage to residential buildings

- Rainfall characteristics
- Local topographic features
- Building-related properties
- Drainage system characteristics
- Socio-economic factors of insured household

See e.g. Cheng (2012), Zhou et al. (2013), Spekkers et al. (2013), Einfalt et al. (2012), Climate Service Center (2013)
1. Insurance database of Dutch Association of Insurers

- Insurance for private property and content
- Claims are related to heavy rainfall: sewer floods, roof leakages, etc.
- Data cover 30% of the insurance market, 1986–2011
- Spatially aggregated unit: neighbourhood level

2. KNMI C-band weather radar

- 1998–2012
- Covering the entire land surface
- 1-km spatial resolution (2.5-km before 2009)
- One image every 5 minutes
1. Insurance database of Dutch Association of Insurers
 - Insurance for private property and content
 - Claims are related to heavy rainfall: sewer floods, roof leakages, etc.
 - Data cover 30% of the insurance market, 1986–2011
 - Spatially aggregated unit: neighbourhood level

2. KNMI C-band weather radar
 - 1998–2012
 - Covering the entire land surface
 - 1-km spatial resolution (2.5-km before 2009)
 - One image every 5 minutes
At radar pixel level

- Maximum intensity
- Mean intensity
- Volume
- Duration

At neighbourhood level

- Claim ratio
- Total damage
- Average damage
Pearson correlations based on 150 days of data

<table>
<thead>
<tr>
<th></th>
<th>Claim ratio*</th>
<th>Total damage*</th>
<th>Average damage*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum intensity</td>
<td>0.38</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>Mean intensity</td>
<td>0.25</td>
<td>0.17</td>
<td>-</td>
</tr>
<tr>
<td>Volume</td>
<td>0.26</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>Duration</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*) damage variables were log-transformed
Conclusions and future work

- Spatial match, but no clear rainfall thresholds
- More intense rainfall results in more claims, not higher claims → implications for damage modelling
- Multivariate analysis: include topographic, socio-economic, building-related factors → rainfall thresholds?