ON THE FLOOD AND INUNDATION MANAGEMENT OF HO CHI MINH CITY, VIET NAM

Ruben Dahm, Ferdinand Diermanse, Ho Long Phi

Exeter, United Kingdom.
September 5th, 2013
Ho Chi Minh City, the economic capital of Viet Nam experiences 20-30 (urban) flood events annually.

Tidal flooding in Binh Tanh district, November 2011.
Viet Nam: Within the top five of countries potentially most affected by climate change. (Daspupta et al., 2008)

Ho Chi Minh City: Ranked within the top ten cities worldwide in terms of exposed population affected by climate change. (Nicholls et al., 2008)

Ho Chi Minh City: Accounts for 23% of GDP and 20% of foreign direct investments. (ADB, 2010)

Frequent flooding hampers the fast development of HCMC.

Increasing HCMC’s flood resilience is eminent.
Study area of the FIM-project
Flood risk reduction with measures

4 Strategies
- Reference
- MARD-plan (12 gates, 172 km embankment)
- MARD-variant
- Soai Rap barrier

4 Scenario’s
- Urban Planning (2025)
- Land subsidence (forecast 2025, 2050)
- Climate Change (SLR, rain)
- Control level gates

4 reference years: 2010, 2025, 2050, 2100

Land subsidence 2025 forecast
Threats / forcing factors

- Three large rivers
- Intense rainfall on the city
- High tides
Need for probabilistic risk analysis

265 communities

Set of measures (ADB, 2009)

241 communities

We developed a framework for probabilistic analysis to assess flood hazards of all combinations, i.e. strategies, scenarios, reference years.
Probabilistic model setup

Rainfall

Discharges
- Dong Nai
- Saigon
- Vam Co

Sea level

Hydrodynamic model HCMC

Water levels and Inundation depths

measure

damage
Some challenges in the risk modelling:

- Large number of threats
- Seasonal variation of risk
- Statistics for extremes and regular events
- Correlation between river discharges
- Different time scales (river vs sea)
- Non-stationary input series (sea level)
GEV-fit of the observed water level at station Vam Kenh

GEV-fit of the detrended water level at station Vam Kenh

Detrending increases the 10yr tidal level with 7cm
Forcing statistics: rainfall, monthly pattern

- Flood risk varies per month
- Different for rainfall and sea water level
- This needs to be taken into account in the simulations
Combining forcing variables

local water level influenced by 2 variables: river discharge and sea water level
Selected method: numerical integration

X-variables:
- Rainfall
- Sea water level
- Saigon river discharge
- Vam Co river discharge
- Dong Nai river discharge
- Each grid cell represents a combination of realisations of the 5 X-variables:

- Each grid cell can be seen as an “event”

- For each event/grid cell, a numerical model run is carried out to determine flood levels

- 2016 model runs for 1 case
Sobek model set up

- Catchment area ~2100 km\(^2\)
- > 2.250 km of rivers, channels, and drains
- Hydrological processes schematized with NAM
Multiple batch runs: database with model results

<table>
<thead>
<tr>
<th>Current situation</th>
<th>Measure 1</th>
<th>Measure 2</th>
<th>Subsidence scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event/Run 1</td>
<td>Event/Run 1</td>
<td>Event/Run 1</td>
<td>Event/Run 1</td>
</tr>
<tr>
<td>Event/Run 2</td>
<td>Event/Run 2</td>
<td>Event/Run 2</td>
<td>Event/Run 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Event/Run N</td>
<td>Event/Run N</td>
<td>Event/Run N</td>
<td>Event/Run N</td>
</tr>
</tbody>
</table>

N=2016
Multi-Criteria analysis criteria:

- Technical and hydraulic performance
- Environmental impacts
- Socio-economic impacts
- Costs and benefits
Conclusions

- A successful application of the probabilistic framework for flood hazard and risk assessment of flood management strategies for HCMC.

- The frameworks’ results support the selection of a preferred flood management strategy to increase HCMC’s flood resilience.

- The probabilistic nature of the framework enables the quantification of expected annual damage.

- Mitigating measures could be compared with expected annual damage reduction as various strategies assessed with the model.

- The framework has specific added value for deltaic areas, where multiple flood forcing factors interact.